
Abstract. A simple proof is presented for a fundamental
topological property of catchment regions of potential
energy hypersurfaces: each catchment region C�k; i�,
representing a chemical species and its conformational
range on the potential energy hypersurface, is simply
k-connected for each dimension k � 1; 2; . . . 3N ÿ 6ÿ k,
where k is the index of the catchment region. The
consequences of this property on the structure of the
fundamental group of reaction mechanisms (the one-
dimensional homotopy group of reaction paths) is
discussed.
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1 Introduction

The steepest descent path representation of the intrinsic
reaction coordinate (IRC) concept of Fukui [1] and the
meta-IRC concept of Tachibana and Fukui [2±4] have
been strong motivating in¯uences in the development of
the topological model of potential energy hypersurfaces
[5±11] and the associated topological description based
on catchment regions [7±9, 11].

Catchment regions generate a partitioning of the
(3N ) 6)-dimensional ``reduced'', or internal nuclear
con®guration space M (which does not involve coordi-
nates describing merely rigid translations and rigid ro-
tations, motions which do not a�ect chemical identity).
Note that for simplicity we shall assume that the number
of nuclei, N , is 3 or more; for the rather trivial cases
of diatomic and monoatomic species the formulas are
somewhat di�erent. Note, however, that for all ®nite N
values, N � 1; 2; 3; . . . ; the internal con®guration space
M is a metric space that, contrary to some common

assumptions, is not a vector space. These and some other
counterintuitive properties of the nuclear con®guration
space are discussed in detail in Ref. [11]

Using the concept of the IRC, a catchment region
C�k; i� of a potential energy hypersurface E�K� is de®ned
[7±9, 11] as the collection of all those nuclear con®gu-
rations K of the reduced nuclear con®guration space M
from where an in®nitely slow, vibrationless relaxation
path, as expressed by the IRC of Fukui and Tachibana
with respect to the given potential energy hypersurface
E�K�, leads to a given critical point K�k; i� of the po-
tential energy hypersurface. In these notations, k is the
index of the critical point (the number of negative
eigenvalues of the local Hessian matrix of the potential
energy hypersurface), whereas i is a simple index of
ordering.

The concept of catchment regions is closely related to
the potential surface cell concept, as suggested by Fukui
and Tachibana [2, 3]. Based on the IRC, as discussed by
Fukui [4], a cell of an n-dimensional Riemannian nuclear
con®guration space may involve several actual catch-
ment regions of various dimensions, for example, those
located on one side of an (nÿ 1)-dimensional ridge. In
the topological model of catchment regions [7±9, 11],
parts of such ridges are regarded as separate, (nÿ 1)-
dimensional catchment regions, representing formal
transition structures (``transition states'') of various
chemical interconversion processes (reactions or con-
formational changes). Within the topological model the
IRC cells of potential surfaces can be generalized to
catchment regions which include not only the most
important attractors of potential energy minima but
also lower-dimensional catchment regions of transition
structures and even lower-dimensional formal entities
[7±9, 11].

The catchment region and cell concepts have their
origins in the inspired works of Cayley [12] and Maxwell
[13], who used some of the mathematical properties of
catchment regions for the description of geographical
terrains, expressing the relations between hills, valleys,
dales, and watersheds. A similar concept of catchment
regions was used by Hoare [14] for the basins of po-
tential minima of various microclusters, where the
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boundary points of neighboring catchment regions were
assumed to belong to both basins; consequently, some of
the nuclear con®gurations had no unique assignment to
critical points of the potential. Basins of empirical po-
tential functions for unit cells in melting ice, as studied
by Stillinger and Weber [15] with regard to phase tran-
sitions, also show analogies with catchment regions.

A formal de®nition of a catchment region can be
given as an equivalence class of internal nuclear con®g-
urations K in the reduced nuclear con®guration space M .
The assignment of each nuclear con®guration K to some
catchment region is based on the steepest decent path
(with reference to mass-weighted nuclear displacements)
leading from the actual con®guration K to a critical
point K�k; i� of the potential energy hypersurface E�K�.
Each steepest descent path in the reduced nuclear con-
®guration space M is represented by a mapping P �K; u�,
where P �K; u� maps the unit interval [0, 1] of parameter
u to the con®guration space M:

P �K; u� : �0; 1� ! M �1�
and where the origin of the path,

P �K; 0� � K �2�
corresponding to the parameter choice of u � 0 coin-
cides with the actual point K, whereas the extremity of
the steepest descent path corresponding to the parameter
choice of u � 1 is the critical point K�k; i�,
P �K; 1� � K�k; i� : �3�
The g-equivalence of nuclear con®gurations

K;K 0 2 M �4�
is de®ned as follows:

K g K 0 �5�
if and only if

P �K; 1� � P�K 0; 1� : �6�
That is, the two nuclear con®gurations K and K 0 are g-
equivalent if and only if the two steepest descent paths
P �K; u� and P�K 0; u� starting from the points K � P�K; 0�
and K 0 � P �K 0; 0�, respectively, have a common extrem-
ity.

With respect to any twice continuously di�erentiable
potential energy hypersurface E�K� (or, with respect to
any approximate energy hypersurface that can be made
twice continuously di�erentiable by suitable local de-
formations near conical intersections or at other non-
analyticities), the g-equivalence relation generates an
equivalence class partitioning of the nuclear con®gura-
tion space M. The equivalence classes,

Cg�K� � Cg�K�k; i�� ; �7�
where the representative element of each class can be
chosen as the critical point K�k; i� itself, de®ne the
catchment regions

C�k; i� � Cg�K� � Cg�K�k; i�� �8�
of the energy hypersurface E�K�.

Each catchment region contains precisely one critical
point, hence it is justi®ed to refer to the catchment
region of a critical point.

The catchment region of an energy minimum, that
(in the nondegenerate case) represents a stable molecular
species, has the dimension 3N ) 6, whereas the catch-
ment region of a saddle point of a transition structure
has the dimension 3N ) 7. Lower-dimensional catch-
ment regions of less direct physical signi®cance complete
the partitioning of the internal nuclear con®guration
space M into a stoichiometric family of catchment
regions [7±9, 11]. The catchment regions are the faces of
various dimensions of a topological structure called a
``reaction polyhedron'', representing the entire potential
energy hypersurface [11].

One of the intuitively appealing aspects of the intro-
duction of the IRC approach of Fukui was the generality
of the de®nition that provided a natural, yet mathe-
matically correct treatment of reaction paths, in a way
that avoided the chances for most of the earlier, rather
common misinterpretations of the multidimensional
descriptions of concerted motions of nuclei. The poten-
tial energy hypersurfaces as well as the underlying nu-
clear con®gurational spaces have many counterintuitive
properties, in part, as a consequence of their high
dimensionality that lies beyond our usual imagination
trained on the three-dimensional perception of the
world. The precise de®nition of a reaction path, resulting
in a one-dimensional line properly embedded in a mul-
tidimensional space, provided some safeguards against
the pitfalls of presuming too many analogies with the
three-dimensional world.

However, several counterintuitive properties of the
nuclear con®guration space M and the associated
potential energy hypersurfaces E�K� are independent of
the representation of reaction paths, and among these
counterintuitive features the lack of some of the vector
space properties of the internal con®guration space M is
perhaps the most often misunderstood. This space not
only lacks the closure property for the operation of
combining elements (hence, it cannot be a vector space),
but it also has a boundary beyond which no elements
exist. Nevertheless, M is still a metric space, and by
providing a suitable set of local coordinate systems and
excluding degenerate conformations involving nuclear
reactions, it can be turned into a manifold with a
boundary [11]. A manifold structure is required for the
use of sets of compatible internal coordinates and for the
di�erentiation of the energy function in a consistent
manner within the complete con®guration space. This
requirement is not always obvious as long as the family
of conformations studied is essentially local, where
simple, three-dimensional analogies and images still can
be used for the interpretation of processes; for most local
analyses of potential surface regions associated with a
few chemical species involved in a reaction process or
conformation change, the chemically motivated internal
coordinates are suitable. For the usual, local descrip-
tions of small amplitude motions, and selected large
amplitude motions, where consistency with descriptions
of very di�erent arrangements of the same nuclei is not a
concern, the choice of internal coordinates and di�er-
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entiation of the energy function are seldom problematic.
However, by assuming too many analogies with the or-
dinary, three-dimensional space, a ``nice'' vector space, it
is not universally appreciated that in most cases the local
coordinate systems cannot be extended to the entire
con®guration space.

In fact, many of the concepts and tools which appear
natural in the ordinary, three-dimensional space, are not
automatically applicable within the internal con®gura-
tion space and need to be checked before adapting them
to the potential energy hypersurface problem, especially,
if globally valid conclusions are needed. Based on the
IRC approach of Fukui, these counterintuitive aspects
of the internal con®guration space have been analyzed in
detail in Ref. [11] and in references quoted therein. In the
present study we shall not repeat this analysis, but we
shall take into acount all the relevant limitations, as well
as some of the related properties of catchment regions.

Several topological as well as geometrical properties
of catchment regions have been demonstrated in various
studies [5±9, 11, 16±21]. These results include the
catchment region point symmetry theorem [16], the
vertical point symmetry theorem [16±18], the analogous
framework group theorems, various symmetry con-
straints on relaxation and other deformation processes,
surface crossings involving several potential energy
hypersurfaces [19, 20], as well as results concerning the
possible number of chemical species associated with
regions of potential energy hypersurfaces [5, 6]. The
catchment region approach also provides an alternative
introduction to the symmetry as well as homotopy group
properties of reaction mechanisms [21].

2 The topological structure of catchment regions

One question of some interest is the following: how
complicated are the patterns of rearrangements of the
nuclei and the associated electron density cloud allowed
for a chemical species while preserving its chemical
identity? Chemical identity can be de®ned in terms of
catchment regions: two nuclear arrangements represent
the same chemical species if these arrangements belong
to the same catchment region. Consequently, this
question can be phrased in terms of patterns of
conformational rearrangement paths which are con®ned
to a single catchment region. In general, if two paths are
continuously deformable into one another within a given
subset of the con®gurations, that is, if the paths are
homotopically equivalent relative to this subset, then in a
topological sense, these two paths describe the same
internal rearrangement process [11]. This approach is
consistent with quantum mechanics: whereas individual,
formal reaction paths, represented by in®nitely ``thin''
lines in a con®guration space with no positional uncer-
tainty for displacements perpendicular to the path are
not compatible with the Heisenberg uncertainty relation,
an entire equivalence class of homotopically equivalent
(continuously interdeformable) reaction paths is com-
patible with the uncertainty relation [11]. In a more
general sense, one may consider the interdeformability of
not only paths but also of higher-dimensional objects of

the con®guration space, for example, two-dimensional
``sheets'' of nuclear arrangements, representing a ``time-
lapse photograph'' of a deformation process of one
formal reaction path into another, that is, representing a
family of homotopically equivalent reaction paths within
a two-dimensional surface of the nuclear con®guration
space. These sheets themselves are deformable, using
two-dimensional homotopies, and the same principle
applies to higher-dimensional objects in the con®gura-
tion space M. Whereas the chemically most important
deformability properties are those involving formal
paths, the higher-dimensional deformations also provide
important clues regarding the structure of the potential
energy hypersurface in local regions of the con®guration
space. In this more general sense, here we are concerned
with the one-, two-,. . . (3N ) 7)-dimensional connected-
ness properties of catchment regions, representing chem-
ical species.

Although connectedness in high dimensions cannot
be visualized, for one and two dimensions simple
examples are available to illustrate the various cases of
1-connectedness and 2-connectedness. An object X is
simply 1-connected if any loop (one-dimensional, topo-
logically circular path) within X is contractible within
the object X into a single point. Otherwise, X is multiply
1-connected. An object is simply 2-connected, if any
closed sheet (``balloon'', a two-dimensional, topological
sphere) within X is contractible within the object X into
a single point. Otherwise, X is multiply 2-connected.
Higher-dimensional k-connectedness is de®ned analo-
gously. A solid ball is simply 1-connected and simply
2-connected, the body of a doughnut is multiply
1-connected but simply 2-connected, whereas the rubber
wall of a hollow ball is simply 1-connected but multi-
ply 2-connected. In higher-dimensional subsets of a
(3N ) 6)-dimensional con®guration space M, many,
complicated combinations of one-, two-,. . . (3N ) 7)-
dimensional connectedness properties may occur. How-
ever, as shown later, catchment regions cannot have
complicated connectedness properties in any dimension.

Since in most actual cases there are many catchment
regions within the con®guration space, our goal is to use
a description that is general enough to handle all regions
of this multidimensional space. Since M is not a vector
space, the usual, chemically motivated internal coordi-
nates are applicable only locally. On the other hand, the
manifold-theoretical description provides proper fami-
lies of compatible coordinate systems within space M,
and by introducing a di�erentiable manifold structure,
the potential energy hypersurface can globally represent
the force ®eld of the given stoichiometric family of the
complete set of all the chemical species associated with
the given set of nuclei which de®ne the con®guration
space [11]. That is, the di�erentiable manifold descrip-
tion is universal enough to handle the force ®elds of all
possible species, in all possible conformations, as long as
the same set of nuclei is involved. These properties are
essential for a mutually compatible representation of
catchment regions, since steepest descent paths, hence
gradients, are required for their de®nitions.

Intuitively, it is natural to expect that all catchment
regions C�k; i� have relatively simple topological struc-
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tures, and one might assume that each catchment region
C�k; i� of index k is homeomorphic to a k-dimensional
open ball. Although multidimensional potential energy
hypersurfaces do provide surprises, in this case the
expectation of simplicity is justi®ed, and the following
result can be proven:

2.1 Catchment region connectedness theorem

Consider a potential energy hypersurface E�K� de®ned
over an internal nuclear con®guration space M, where
E�K� is assumed to be twice di�erentiable, and further-
more it is assumed to have no degenerate critical points.
Then each catchment region C�k; i� of E�K� is simply
k-connected for each dimension k; 0 � k � 3N ÿ 6ÿ k.

2.1.1 Comments

The restriction on di�erentiability and the exclusion of
degenerate critical points are not very severe constraints,
since the potential energy hypersurface E�K� for any set
of a stoichiometric family of chemical species can be
approximated arbitrarily closely by a function which
satis®es these constraints [11]. In particular, at conical
intersections or seams of intersections, where di�eren-
tiability is locally violated, these properties can be
ensured by a simple transformation involving arbitrarily
small local deformations [11]. In fact, the potential
energy hypersurface can be converted by such small
deformations into a function that is a ``Morse function''
[22±24], ful®lling all these constraints, and also provid-
ing an opportunity to apply some of the powerful tools
of calculus on manifolds and algebraic topology [25±27].
These methods lead to a quantum chemical interpretat-
ion of reaction mechanisms using an energy-dependent
algebraic-topological structure, the fundamental group
of reaction mechanisms [11]. Just like point symmetry
groups represent some of the most essential information
in molecular shape analysis, the energy-dependent
fundamental groups of reaction mechanisms represent
some of the most essential information on the interre-
lations between reaction mechanisms [11].

Based on the properties of di�erentiability and non-
degeneracy of critical points, a simple combination of
the critical level set topology [10] and the catchment
region topology [7] provides the proof.

2.1.2 Proof

1. Each catchment region C�k; i� must be 1-connected,
that is, it must be pathwise-connected, since according to
the de®nition of catchment regions, each point K of the
catchment region is the origin of a steepest descent path
within C�k; i� that leads to the unique critical point
K�k; i� within C�k; i�.

Take any two conformations K and K 0 from a catch-
ment region C�k; i�,
K;K 0 2 C�k; i� ; �9�
then

K g K 0 �10�
which implies that for the two steepest descent paths
P �K; u� and P �K 0; u� of origins P�K; 0� � K and
P �K 0; 0� � K 0, respectively, the endpoints coincide with
the unique critical point K�k; i� within C�k; i�:
P �K; 1� � P�K 01� � K�k; i� : �11�
Consequently, point K is pathwise-connected to point K 0
within C�k; i� by a path P�K;K 0; u� that is obtained as the
path P �K; u� followed by the inverse path Pÿ1�K 0; u� of
path P �K; u�, that is, by a so-called product path that
leads from K to K 0

P �K;K 0; u� � P�K; u�Pÿ1�K 0; u� : �12�
Since this holds for all point-pairs K and K 0 within
C�k; i�, the catchment region C�k; i� is 1-connected.

2. In order to show that C�k; i� is not only 1-con-
nected but simply k-connected for every dimension k,
0 � k � k, we shall use a combination of some of the
open sets of the critical level topology [10] and the
catchment region topology [7] of potential energy
hypersurfaces. Furthermore, in order to be able to apply
some of the tools we shall use in the proof, the part of
the potential energy hypersurface studied must be de-
®ned on a compact, orientable manifold, whereas the
internal con®guration space M is not in general compact
[11]. Nevertheless, level sets with su�ciently low energy
bounds are compact, and the compactness property is
either directly inherited, or can be achieved by a simple
transformation for all those sets of nuclear con®gura-
tions which are needed in the proof.

A closed level set FE�K��A� of the nuclear con®gura-
tion space M, with respect to a given potential energy
hypersurface E�K� and an energy bound A is de®ned as
the collection of all those nuclear arrangements K in the
nuclear con®guration space M which have energies less
than or equal to the energy threshold A:

FE�K��A� � fK : E�K� � Ag �13�
A level set restricted to a catchment region C�k; i� is the
intersection of the two sets:

FE�K�;C�k;i��A� � fK : E�K� � A; K 2 C�k; i�g
� FE�K��A� \ C�k; i� : �14�

Such a restricted level set FE�K�;C�k;i��A� is either compact,
or can be converted into a compact set by a technique
analogous to the Alexandrov one-point compacti®cat-
ion, as described in Ref. [11]. If a compacti®cation step is
required, then the topological relations between the
original, restricted level set FE�K�;C�k;i��A� and its com-
pacti®ed counterpart are well de®ned, and are easily
tractable [11]. Consequently, in the following it will be
su�cient to consider the more common case of compact
restricted level set FE�K�;C�k;i��A�.

A critical level set is a set FE�K��A� where the energy
threshold A is a value that corresponds to the energy of a
critical point K 0�k; i� of the potential energy hypersurface
E�K�.
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Within each catchment region C�k; i�, the critical
point K�k; i� of the catchment region C�k; i� is the
nuclear arrangement of lowest energy:

E�K�k; i�� � E�K�; K 2 C�k; i� : �15�
Consequently, for every energy bound for which the
restricted level set FE�K�;C�k;i��A� is nonempty, the critical
point K�k; i� is an element of the restricted level set
FE�K�;C�k;i��A�,
K�k; i� 2 FE�K�;C�k;i��A�; if FE�K�;C�k;i��A� 6� [ : �16�
Now we shall show that each restricted level set
FE�K�;C�k;i��A� is also pathwise-connected. If two confor-
mations K and K 0 are chosen from the restricted level set
FE�K�;C�k;i��A�, then
E�K� � A �17�
and

E�K 0� � A : �18�
Furthermore, since the catchment region C�k; i� itself is
pathwise-connected and since the paths P�K; u� and
P �K 0; u� of origins P �K; 0� � K and P �K 0; 0� � K 0 are
steepest descent paths, it follows that any point of each
path must have energy bounded by A. That is, if

K 00 2 P �K; u� �19�
or if

K 00 2 P �K 0; u� ; �20�
then

E�K 00� � A ; �21�
hence

K 00 2 FE�K�;C�k;i��A� : �22�
The endpoints of these paths P�K; u� and P�K 0; u�
coincide with the unique critical point K�k; i� of C�k; i�,
that falls within FE�K�;C�k;i��A�:
P �K; 1� � P�K 0� � K�k; i� : �23�
Consequently, point K is pathwise-connected to point K 0
within FE�K�;C�k;i��A� by a path P�K;K 0; u� obtained as the
path P�K; u� followed by the inverse path Pÿ1�K 0; u� of
path P �K 0; u�, formally denoted as their product path:

P �K; K 0; u� � P �K; u�Pÿ1�K 0; u� : �24�
This holds for all point-pairs K and K 0 within
FE�K�;C�k;i��A�; consequently, the restricted level set
FE�K�;C�k;i��A� is 1-connected.

Since the critical point K�k; i� is nondegenerate, there
must exist some small enough positive energy increment
DA; DA > 0, such that the restricted level set
FE�K�;C�k;i��A0 � DA�, where
A0 � E�K�k; i�� ; �25�
is simply k-connected for every dimension k,
0 � k � 3N ÿ 6ÿ k:

Select one such dimension k. Contrary to the state-
ment of the theorem, assume that C�k; i� is multiply k-

connected. Take the energy threshold A1(k) as the lowest
value where the k-connectedness of the restricted level
set FE�K�;C�k;i��A� changes from simply k-connected to
multiply k-connected. If no such energy value exists,
then the catchment region C�k; i� is simply k-connected.
Otherwise, if such a lowest energy threshold A1(k)
exists, then the corresponding restricted level set
FE�K�;C�k;i��A1�k�� must be a critical level set, such that
FE�K�;C�k;i��A1�k�� contains a critical point K�k0; i0�, such
that

K�k0; i0� 6� K�k; i� ; �26�
K�k0; i0� 2 FE�K�;C�k;i��A1�k�� ; �27�
and

E�K�k0; i0�� � A1�k� ; �28�
since for a Morse function, such as the energy function
E(K) within FE�K�;C�k;i��A1; �k��, connectedness can
change only at a critical level. However, each catchment
region contains precisely one critical point, that must be
K�k; i� in C�k; i�; consequently, Eqs. (26) and (27) cannot
hold simultaneously ± a contradiction. Consequently,
C�k; i� cannot be multiply k-connected. Since
FE�K�;C�k;i��A0 � DA� is simply k-connected, one con-
cludes that C�k; i� is also simply k-connected.

This conclusion is general for all dimensions
k; 0 � k � 3N ÿ 6ÿ k, that proves the statement of the
theorem: each catchment region C�k; i� is simply k-con-
nected for all dimensions k; 0 � k � 3N ÿ 6ÿ k.

Homotopy groups, among them the one-dimensional
homotopy group of reaction mechanisms, or confor-
mational rearrangement mechanisms, are algebraic-to-
pological descriptors of the structure of various regions
of the potential energy hypersurface [11]. These groups
can be restricted to local ranges, for example, to indi-
vidual catchment regions. The result concerning the
connectedness types of catchment regions proven above
implies that all the homotopy groups of catchment re-
gions are very simple: they are all trivial groups, for all
dimensions k; 0 � k � 3N ÿ 6ÿ k. Speci®cally, the one-
dimensional homotopy group, that is, the fundamental
group of reaction mechanisms restricted to any catch-
ment region is necessarily the trivial group. This is an
intuitively satisfying result that coincides with the ex-
pectation of uninhibited conformational changes within
a catchment region, that is, within the family of nuclear
arrangements preserving chemical identity. In other
words, within a catchment region there are no topolog-
ical constraints beyond the topological relations between
neighboring catchment regions and energy alone in¯u-
ences the pattern of conformational rearrangements.
The universality of this result for all catchment regions
provides a topological version of the unique extension
property of local geometrical ranges of potential energy
hypersurfaces to a global hypersurface.
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